

SilviMetric

SilviMetric is an open source library and set of utilities from
Hobu, Inc. [https://hobu.co] that are useful for summarizing point cloud
data into raster and raster-like products.

Find out more about SilviMetric by visiting About. A slide deck about
SilviMetric is also available on Google Slides [https://docs.google.com/presentation/d/1E561EgWwLgN5R9P0LBxuI1r7kG155u8E6-MOWpkycSM/edit?usp=sharing].

Contents

	About
	Technologies

	Command Line Interface
	extract

	shatter

	info

	initialize

	scan

	API
	Resources

	Commands

	QuickStart
	Installation

	Initialization

	Scan

	Shatter

	Extract

	Info

	Delete

	Restart

	Resume

	Development

	Tutorial
	Introduction

	Technologies

	Command Line Interface Usage

	Python API Usage

Indices and tables

	Index

	Module Index

	Search Page

About

Summarizing and filtering point cloud data into useful information for modeling
is challenging. In forestry applications in particular, the FUSION [http://forsys.sefs.uw.edu/fusion/fusionlatest.html] software toolkit
is often used to extract information in preparation for modeling. FUSION, however,
has a few missing features that make it

Working with Bob McGaughey and the USFS GTAC team, Kyle Mann and Howard Butler from
Hobu, Inc. [https://hobu.co/], developed the initial prototype of SilviMetric to implement an alternative
approach to computing the “GridMetrics” component of typical FUSION [http://forsys.sefs.uw.edu/fusion/fusionlatest.html] processing
pipelines.

SilviMetric does this by breaking apart the computation of metrics into three
distinct steps – info, shatter, and extract. SilviMetric takes
an infrastructure computing approach to the challenge by applying emerging open
source technologies that speak cloud, are nimble with data formats, and compute
in a more friendly language - Python [https://python.org/].

Technologies

SilviMetric stands on the shoulders of giants to provide an integrated solution to
computing rasterized point cloud metrics. These technologies include:

	PDAL [https://pdal.io/] reads point cloud content and allows users to filter or process data
as it ingested.

	Dask [https://www.dask.org/] processes tasks for :ref`shatter` and extract in a highly
parallel, cloud-friendly distributed computing environment.

	TileDB [https://tiledb.com/] stores metrics in cloud object stores such as S3 [https://aws.amazon.com/pm/serv-s3/] in addition to
typical filesystems.

	Python [https://python.org/] computes metrics and provides a diverse and convenient computing
capability for users to easily add and extract their own metrics to the database.

Command Line Interface

The command line interface (CLI) will facilitate your interaction with
Silvimetric from the terminal.

Usage: silvimetric [OPTIONS] COMMAND [ARGS]...

Options:
-d, --database PATH Database path
--debug Changes logging level from INFO to DEBUG.
--log-dir TEXT Directory for log output
--progress BOOLEAN Report progress
--workers INTEGER Number of workers for Dask
--threads INTEGER Number of threads per worker for Dask
--watch Open dask diagnostic page in default web
 browser.
--dasktype [threads|processes] What Dask uses for parallelization. For
 moreinformation see here https://docs.dask.o
 rg/en/stable/scheduling.html#local-threads
--scheduler [distributed|local|single-threaded]
 Type of dask scheduler. Both are local, but
 are run with different dask libraries. See
 more here https://docs.dask.org/en/stable/sc
 heduling.html.
--help Show this message and exit.

Commands:
extract Extract silvimetric metrics from DATABASE
info Retrieve information on current state of DATABASE
initialize Create an empty DATABASE
scan Scan point cloud and determine the optimal tile size.
shatter Shatter point clouds into DATABASE cells.

Commands

	extract

	shatter

	info

	initialize

	scan

extract

Extract metrics from SilviMetrics database as raster products

Synopsis

Usage: silvimetric [OPTIONS] extract [OPTIONS]

Extract silvimetric metrics from DATABASE

Options:
-a, --attributes ATTRS List of attributes to include output
-m, --metrics METRICS List of metrics to include in output
--bounds BOUNDS Bounds for data to include in output
-o, --outdir PATH Output directory. [required]
--help Show this message and exit.

Example

silvimetric -d test.tdb extract -o test_tifs/

shatter

Shatter inserts point cloud data into a SilviMetric database

Synopsis

Usage: silvimetric [OPTIONS] shatter [OPTIONS] POINTCLOUD

Insert data provided by POINTCLOUD into the silvimetric DATABASE

Options:
--bounds BOUNDS Bounds for data to include in processing
--tilesize INTEGER Number of cells to include per tile
--report Whether or not to write a report of the
 process, useful for debugging
--date [%Y-%m-%d|%Y-%m-%dT%H:%M:%SZ]
 Date the data was produced.
--dates <DATETIME DATETIME>... Date range the data was produced during
--help Show this message and exit.

Example

silvimetric -d test.tdb shatter --date 2023-1-1 tests/data/test_data.copc.laz

info

Info will query the database and output information about the Shatter
processes that been run as well as the database schema.

Synopsis

Usage: silvimetric [OPTIONS] info [OPTIONS]

Print info about Silvimetric database

Options:
 --bounds BOUNDS Bounds to filter by
 --date [%Y-%m-%d|%Y-%m-%dT%H:%M:%SZ]
 Select processes with this date
 --history Show the history section of the output.
 --metadata Show the metadata section of the output.
 --attributes Show the attributes section of the output.
 --dates <DATETIME DATETIME>... Select processes within this date range
 --name TEXT Select processes with this name
 --help Show this message and exit.

Example

silvimetric -d test.tdb info

initialize

Initialize constructs a SilviMetric database

The initialize subcommand constructs the basic TileDB [https://tiledb.com/] instance to host the
SilviMetric data. It can be either a local filesystem path or a S3 [https://aws.amazon.com/pm/serv-s3/] URI (eg.
s3://silvimetric/mydata).

Synopsis

Usage: silvimetric [OPTIONS] initialize [OPTIONS]

Initialize silvimetrics DATABASE

Options:
--bounds BOUNDS Root bounds that encapsulates all data [required]
--crs CRS Coordinate system of data [required]
-a, --attributes ATTRS List of attributes to include in Database
-m, --metrics METRICS List of metrics to include in Database
--resolution FLOAT Summary pixel resolution
--help Show this message and exit.

Example

silvimetric --database test.tdb initialize --crs "EPSG:3857" \
 --bounds '[300, 300, 600, 600]'

scan

This will inspect a point cloud file with the database as a reference and
supply an estimate of what tile size you could use for Shatter operations.

Synopsis

silvimetric [OPTIONS] scan [OPTIONS] POINTCLOUD

Options:
--resolution FLOAT Summary pixel resolution
--filter Remove empty space in computation. Will take extra
 time.
--point_count INTEGER Point count threshold.
--depth INTEGER Quadtree depth threshold.
--bounds BOUNDS Bounds to scan.
--help Show this message and exit.

Usage

silvimetric --database test.tdb scan tests/data/test_data.copc.laz

API

Resources

	Config

	Bounds

	Data

	Log

	Storage

	Entry

	Attribute

	Metric

	Extents

Commands

	Initialize

	Scan

	Shatter

	Info

	Extract

	Delete

	Resume

	Restart

Config

	
class silvimetric.resources.config.ApplicationConfig(debug: bool = (False,), progress: bool = (False,), dasktype: str = 'processes', scheduler: str = 'distributed', workers: int = 12, threads: int = 4, watch: bool = False, *, tdb_dir: str, log: ~silvimetric.resources.log.Log = <factory>)

	Base application config

	
dasktype: str = 'processes'

	Dask parallelization type. For information see
https://docs.dask.org/en/stable/scheduling.html#local-threads

	
debug: bool = (False,)

	Debug mode, defaults to False

	
progress: bool = (False,)

	Should processes display progress bars, defaults to False

	
scheduler: str = 'distributed'

	Dask scheduler, defaults to ‘distributed’

	
threads: int = 4

	Number of threads per dask worker

	
watch: bool = False

	Open dask diagnostic page in default web browser

	
workers: int = 12

	Number of dask workers

	
class silvimetric.resources.config.Config(*, tdb_dir: str, log: ~silvimetric.resources.log.Log = <factory>, debug: bool = False)

	Base config

	
debug: bool = False

	Debug flag.

	
log: Log

	Log object.

	
tdb_dir: str

	Path to TileDB directory to use.

	
class silvimetric.resources.config.ExtractConfig(out_dir: str, attrs: list[~silvimetric.resources.entry.Attribute] = <factory>, metrics: list[~silvimetric.resources.metric.Metric] = <factory>, bounds: ~silvimetric.resources.bounds.Bounds = None, *, tdb_dir: str, log: ~silvimetric.resources.log.Log = <factory>, debug: bool = False)

	Config for the Extract process.

	
attrs: list[Attribute]

	List of attributes to use in shatter. If this is not set it
will be filled by the attributes in the database instance.

	
bounds: Bounds = None

	The bounding box of the shatter process., defaults to None

	
metrics: list[Metric]

	A list of metrics to use in shatter. If this is not set it
will be filled by the metrics in the database instance.

	
out_dir: str

	The directory where derived rasters should be written.

	
class silvimetric.resources.config.ShatterConfig(filename: str, date: ~datetime.datetime | ~typing.Tuple[~datetime.datetime, ~datetime.datetime], attrs: list[~silvimetric.resources.entry.Attribute] = <factory>, metrics: list[~silvimetric.resources.metric.Metric] = <factory>, bounds: ~silvimetric.resources.bounds.Bounds | None = None, name: ~uuid.UUID = UUID('fa4d465c-6701-4953-bc09-a75fde22c157'), tile_size: int | None = None, start_time: float = 0, end_time: float = 0, point_count: int = 0, mbr: tuple[tuple[tuple[int, int], tuple[int, int]], ...] = <factory>, finished: bool = False, time_slot: int = 0, *, tdb_dir: str, log: ~silvimetric.resources.log.Log = <factory>, debug: bool = False)

	Config for Shatter process

	
attrs: list[Attribute]

	List of attributes to use in shatter. If this is not set it will be
filled by the attributes in the database instance.

	
bounds: Bounds | None = None

	The bounding box of the shatter process., defaults to None

	
date: datetime | Tuple[datetime, datetime]

	A date or date range representing data collection times.

	
end_time: float = 0

	The process ending time in seconds since Jan 1 1970., defaults to 0

	
filename: str

	Input filename referencing a PDAL pipeline or point cloud file.

	
finished: bool = False

	Finished flag for shatter process., defaults to False

	
mbr: tuple[tuple[tuple[int, int], tuple[int, int]], ...]

	The minimum bounding rectangle derived from TileDB array fragments.
This will be used to for resuming shatter processes and making sure it
doesn’t repeat work., defaults to tuple()

	
metrics: list[Metric]

	A list of metrics to use in shatter. If this is not set it will be filled by the metrics in the database instance.

	
name: UUID = UUID('fa4d465c-6701-4953-bc09-a75fde22c157')

	UUID representing this shatter process and will be generated if not
provided., defaults to uuid.uuid()

	
point_count: int = 0

	The number of points that has been processed so far., defaults to 0

	
start_time: float = 0

	The process starting time in seconds since Jan 1 1970., defaults to 0

	
tile_size: int | None = None

	The number of cells to include in a tile., defaults to None

	
time_slot: int = 0

	The time slot that has been reserved for this shatter process. Will be
used as the timestamp in tiledb writes to better organize and manage
processes., defaults to 0

	
class silvimetric.resources.config.SilviMetricJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	
	
default(o)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
class silvimetric.resources.config.StorageConfig(root: ~silvimetric.resources.bounds.Bounds, crs: pyproj.CRS, resolution: float = 30.0, attrs: list[~silvimetric.resources.entry.Attribute] = <factory>, metrics: list[~silvimetric.resources.metric.Metric] = <factory>, version: str = '1.2.1', capacity: int = 1000000, next_time_slot: int = 1, *, tdb_dir: str, log: ~silvimetric.resources.log.Log = <factory>, debug: bool = False)

	Config for constructing a Storage object

	
attrs: list[Attribute]

	List of silvimetric.resources.entry.Attribute attributes that
represent point data, defaults to Z, NumberOfReturns, ReturnNumber, Intensity

	
capacity: int = 1000000

	TileDB Capacity, defaults to 1000000

	
crs: pyproj.CRS

	Coordinate reference system, same for all data in a project

	
metrics: list[Metric]

	List of silvimetric.resources.metric.Metric Metrics that
represent derived data, defaults to values in Metrics object

	
next_time_slot: int = 1

	Next time slot to be allocated to a shatter process. Increment after
use., defaults to 1

	
resolution: float = 30.0

	Resolution of cells, same for all data in a project, defaults to 30.0

	
root: Bounds

	Root project bounding box

	
version: str = '1.2.1'

	Silvimetric version

Bounds

	
class silvimetric.resources.bounds.Bounds(minx: float, miny: float, maxx: float, maxy: float)

	Simple class to represent a 2 or 3-dimensional bounding box that can be
generated from both JSON or PDAL bounds form.

	
adjust_to_cell_lines(resolution)

	

	
bisect()

	Bisects the current Bounds

	Yield:

	4 child bounds

	
disjoint(other)

	Determine if two bounds are disjointed

	Parameters:

	other – Bounds this object is being compared to

	Returns:

	True if this box shares no point with the other box, otherwise False

	
static from_string(bbox_str: str)

	Create Bounds object from a PDAL bounds string in the form:

“([1,101],[2,102],[3,103])”
“{“minx”: 1,”miny”: 2,”maxx”: 101,”maxy”: 102}”
“[1,2,101,102]”
“[1,2,3,101,102,103]”

	Parameters:

	bbox_str – Bounds string

	Raises:

	
	Exception – Unable to load Bounds via json or PDAL bounds type

	Exception – Bounding boxes must have either 4 or 6 elements

	Returns:

	Bounds object

	
get() → list[float]

	Return Bounds as a list of floats

	Returns:

	list of floats in form [minx, miny, maxx, maxy]

	
static shared_bounds(first, second)

	Find the Bounds that is shared between two Bounds.

	Parameters:

	
	first – First Bounds object for comparison.

	second – Second Bounds object for comparison.

	Returns:

	None if there is no overlap, otherwise the shared Bounds

	
to_json() → list[float]

	Return object as a json serializable list

	Returns:

	list of floats in form [minx, miny, maxx, maxy]

	
to_string() → str

	Return string representation of Bounds

	Returns:

	string of a list of floats in form [minx, miny, maxx, maxy]

	
maxx

	maximum X plane

	
maxy

	maximum Y plane

	
minx

	minimum X Plane

	
miny

	minimum Y plane

Data

	
class silvimetric.resources.data.Data(filename: str, storageconfig: StorageConfig, bounds: Bounds = None)

	Bases: object

Represents a point cloud or PDAL pipeline, and performs essential operations
necessary to understand and execute a Shatter process.

	
count(bounds: Bounds) → int

	For the provided bounds, read and count the number of points that are
inside them for this instance.

	Parameters:

	bounds – query bounding box

	Returns:

	point count

	
estimate_count(bounds: Bounds) → int

	For the provided bounds, estimate the maximum number of points that
could be inside them for this instance.

	Parameters:

	bounds – query bounding box

	Returns:

	estimated point count

	
execute()

	Execute PDAL pipeline

	Raises:

	Exception – PDAL error message passed from execution

	
get_array() → ndarray

	Fetch the array from the execute()’d pipeline

	Returns:

	get data as a numpy ndarray

	
static get_bounds(reader: pdal.Reader) → Bounds

	Get the bounding box of a point cloud from PDAL.

	Parameters:

	reader – PDAL Reader representing input data

	Returns:

	bounding box of point cloud

	
get_pipeline() → pdal.Pipeline

	Fetch the pipeline for the instance

	Raises:

	
	Exception – File type isn’t COPC or EPT

	Exception – More than one reader detected

	Returns:

	Return PDAL pipline

	
get_reader() → pdal.Reader

	Grab or make the reader for this instance so we can use it to do things
like get the count()

	Returns:

	get PDAL reader for input

	
is_pipeline() → bool

	Does this instance represent a pdal.Pipeline or a simple filename

	Returns:

	Return true if input is a pipeline

	
make_pipeline() → pdal.Pipeline

	Take a COPC or EPT endpoint and generate a PDAL pipeline for it

	Returns:

	Return PDAL pipeline

	
to_json()

	

	
property array: ndarray

	Fetch the array from the execute()’d pipeline

	Returns:

	get data as a numpy ndarray

	
bounds

	Bounds of this section of data

	
filename

	Path to either PDAL pipeline or point cloud file

	
pipeline

	PDAL pipeline

	
reader

	PDAL reader

	
reader_thread_count

	Thread count for PDAL reader. Keep to 2 so we don’t hog threads

	
storageconfig

	silvimetric.resources.StorageConfig

Log

log.py
Project: CRREL-NEGGS University of Houston Collaboration
Date: February 2021

A module for setting up logging.

	
class silvimetric.resources.log.Log(log_level: int, logdir: str = None, logtype: str = 'stream', logfilename: str = 'silvimetric-log.txt')

	Bases: object

	
debug(msg: str)

	Forward debug messages down to logger

	
info(msg: str)

	Forward info messages down to logger

	
to_json()

	

	
warning(msg: str)

	Forward warning messages down to logger

Storage

	
class silvimetric.resources.storage.Storage(config: StorageConfig, ctx: Ctx = None)

	Handles storage of shattered data in a TileDB Database.

	
consolidate_shatter(proc_num: int, retries=0) → None

	Consolidate the fragments from a shatter process into one fragment.
This makes the database perform better, but reduces the granularity of
time traveling.

	Parameters:

	proc_num – Time slot associated with shatter process.

	
static create(config: StorageConfig, ctx: Ctx = None)

	Creates TileDB storage.

Parameters

	configStorageConfig
	Storage StorageConfig

	ctxtiledb.Ctx, optional
	TileDB Context, by default is None

Returns

	Storage
	Returns newly created Storage class

Raises

	Exception
	Raises bounding box errors if not of lengths 4 or 6

	
delete(proc_num: int) → ShatterConfig

	Delete Shatter process and all associated data from database.

	Parameters:

	proc_num – Shatter process time slot

	Returns:

	Config of deleted Shatter process

	
static from_db(tdb_dir: str)

	Create Storage object from information stored in a database.

	Parameters:

	tdb_dir – TileDB database directory.

	Returns:

	Returns the derived storage.

	
getAttributes() → list[Attribute]

	Find list of attribute names from storage config.

	Returns:

	List of attribute names.

	
getConfig() → StorageConfig

	Get the StorageConfig currently in use by the Storage.

	Returns:

	StorageConfig representing this object.

	
getDerivedNames() → list[str]

	

	
getMetadata(key: str, timestamp: int) → str

	Return metadata at given key.

	Parameters:

	
	key – Key to look for in metadata.

	timestamp – Time stamp for querying database.

	Returns:

	Metadata value found in storage.

	
getMetrics() → list[Metric]

	Find List of metric names from storage config

	Returns:

	List of metric names.

	
get_fragments_by_time(proc_num: int) → list[FragmentInfo]

	Get TileDB array fragments from the time slot specified.

	Parameters:

	proc_num – Requested time slot.

	Returns:

	Array fragments from time slot.

	
get_history(start_time: datetime, end_time: datetime, bounds: Bounds, name: str = None)

	Retrieve history of the database at current point in time.

	Parameters:

	
	start_time – Query parameter, starting datetime of process.

	end_time – Query parameter, ending datetime of process.

	bounds – Query parameter, bounds to query by.

	name – Query paramter, shatter process uuid., by default None

	Returns:

	Returns list of array fragments that meet query parameters.

	
mbrs(proc_num: int)

	Get minimum bounding rectangle of a given shatter process. If this process
has been finished and consolidated the mbr will be much less granulated
than if the fragments are still intact. Mbrs are represented as tuples
in the form of ((minx, maxx), (miny, maxy))

	Parameters:

	proc_num – Process number or time slot of the shatter process.

	Returns:

	Returns mbrs that match the given process number.

	
open(mode: str = 'r', timestamp=None) → Generator[SparseArrayImpl, None, None]

	Open stream for TileDB database in given mode and at given timestamp.

	Parameters:

	
	mode – Mode to open TileDB stream in. Valid options are
‘w’, ‘r’, ‘m’, ‘d’., defaults to ‘r’.

	timestamp – Timestamp to open database at., defaults to None.

	Raises:

	
	Exception – Incorrect Mode was given, only valid modes are ‘w’ and ‘r’.

	Exception – Path exists and is not a TileDB array.

	Exception – Path does not exist.

	Yield:

	TileDB array context manager.

	
reserve_time_slot() → int

	Increment time slot in database and reserve that spot for a new
shatter process.

	Parameters:

	config – Shatter config will be written as metadata to reserve
time slot.

	Returns:

	Time slot.

	
saveConfig() → None

	Save StorageConfig to the Database

	
saveMetadata(key: str, data: str, timestamp: int) → None

	Save metadata to storage.

	Parameters:

	
	key – Metadata key to save to.

	data – Data to save to metadata.

Entry

	
class silvimetric.resources.entry.Entry

	Base class for Attribute and Metric. These represent entries into the
database.

Attribute

	
class silvimetric.resources.entry.Attribute(name: str, dtype: dtype)

	Represents point data from a PDAL execution that has been binned, and
provides the information necessary to transfer that data to the database.

Metric

	
class silvimetric.resources.metric.Metric(name: str, dtype: dtype, method: Callable[[ndarray], ndarray], dependencies: list[Entry] = [], filters: List[Callable[[ndarray, Any | None], ndarray]] = [], attributes: List[Attribute] = [])

	A Metric is an Entry representing derived cell data. There is a base set of
metrics available through Silvimetric, or you can create your own. A Metric
object has all the information necessary to facilitate the derivation of
data as well as its insertion into the database.

Extents

	
class silvimetric.resources.extents.Extents(bounds: Bounds, resolution: float, root: Bounds)

	Handles bounds operations for point cloud data.

	
chunk(data: Data, res_threshold=100, pc_threshold=600000, depth_threshold=6)

	Split up a dataset into tiles based on the given thresholds. Unlike Scan
this will filter out any tiles that contain no points.

	Parameters:

	
	data – Incoming Data object to oeprate on.

	res_threshold – Resolution threshold., defaults to 100

	pc_threshold – Point count threshold., defaults to 600000

	depth_threshold – Tree depth threshold., defaults to 6

	Returns:

	Return list of Extents that fit the criteria

	
disjoint(other)

	Determined if this Extents shares any points with another Extents object.

	Parameters:

	other – Extents object to compare against.

	Returns:

	True if no shared points, false otherwise.

	
disjoint_by_mbr(mbr)

	Determine if this Extents shares any points with a minimum bounding
rectangle.

	Parameters:

	mbr – Minimum bounding rectangle as defined by TileDB.

	Returns:

	True if no shared points, false otherwise.

	
filter()

	Creates quad tree of chunks for this bounds, runs pdal quickinfo over
this to determine if there are any points available. Uses a bottom resolution
of 1km.

	Parameters:

	
	data – Data object containing point cloud details.

	res_threshold – Resolution threshold., defaults to 100

	pc_threshold – Point count threshold., defaults to 600000

	depth_threshold – Tree depth threshold., defaults to 6

	depth – Current tree depth., defaults to 0

	Returns:

	Returns a list of Extents.

	
static from_storage(tdb_dir: str)

	Create Extents from information stored in database.

	Parameters:

	tdb_dir – TileDB database directory.

	Returns:

	Returns resulting Extents.

	
static from_sub(tdb_dir: str, sub: Bounds)

	Create an Extents that is less than the overall extents of the database.

	Parameters:

	
	tdb_dir – TileDB database directory.

	sub – Desired bounding box.

	Returns:

	Returns resulting Extents.

	
get_indices()

	Create indices for this section of the database relative to the root
bounds.

	Returns:

	Indices of this bounding box

	
get_leaf_children(tile_size)

	Get children Extents with given number of cells per tile.

	Parameters:

	tile_size – Cells per tile.

	Yield:

	Yield from list of child extents.

	
split()

	Split this extent into 4 children along the cell lines

	Returns:

	Returns 4 child extents

	
bounds

	Bounding box of this section of data.

	
cell_count

	Number of cells in this Extents

	
domain: tuple[tuple[float, float], tuple[float, float]]

	Minimum bounding rectangle of this Extents

	
rangex

	Range of X Indices

	
rangey

	Range of Y indices

	
resolution

	Resolution of database.

	
root

	Root bounding box of the database.

	
x1

	Minimum X index

	
x2

	Maximum X index

	
y1

	Minimum Y index, or maximum Y value in point cloud

	
y2

	Maximum Y index, or minimum Y value in point cloud

Initialize

	
silvimetric.commands.initialize.initialize(storage: StorageConfig)

	Initialize a Silvimetric TileDB instance for a given StorageConfig instance.

	Parameters:

	storage – silvimetric.resources.config.StorageConfig.

	Returns:

	silvimetric.resources.storage.Storage database object.

Scan

	
silvimetric.commands.scan.extent_handle(extent: Extents, data: Data, res_threshold: int = 100, pc_threshold: int = 600000, depth_threshold: int = 6, log: Log = None) → list[int]

	Recurisvely iterate through quad tree of this Extents object with given
threshold parameters.

	Parameters:

	
	extent – Current Extent.

	data – Data object created from point cloud file.

	res_threshold – Resolution threshold., defaults to 100

	pc_threshold – Point count threshold., defaults to 600000

	depth_threshold – Tree depth threshold., defaults to 6

	Returns:

	Returns list of Extents that fit thresholds.

	
silvimetric.commands.scan.scan(tdb_dir: str, pointcloud: str, bounds: Bounds, point_count: int = 600000, resolution: float = 100, depth: int = 6, filter: bool = False, log: Log = None)

	Scan pointcloud and determine appropriate tile sizes.

	Parameters:

	
	tdb_dir – TileDB database directory.

	pointcloud – Path to point cloud.

	bounds – Bounding box to filter by.

	point_count – Point count threshold., defaults to 600000

	resolution – Resolution threshold., defaults to 100

	depth – Tree depth threshold., defaults to 6

	filter – Remove empty Extents. This takes longer, but is more accurage., defaults to False

	Returns:

	Returns list of point counts.

Shatter

	
silvimetric.commands.shatter.agg_list(df: pandas.DataFrame)

	Make variable-length point data attributes into lists

	
silvimetric.commands.shatter.arrange(points: pandas.DataFrame, leaf, attrs: list[str])

	Arrange data to fit key-value TileDB input format.

	Parameters:

	
	data – Tuple of indices and point data array (xis, yis, data).

	leaf – silvimetric.resources.extents.Extent being operated on.

	attrs – List of attribute names.

	Raises:

	Exception – Missing attribute error.

	Returns:

	None if no work is done, or a tuple of indices and rearranged data.

	
silvimetric.commands.shatter.get_data(extents: Extents, filename: str, storage: Storage) → ndarray

	Execute pipeline and retrieve point cloud data for this extent

	Parameters:

	
	extents – silvimetric.resources.extents.Extents being operated on.

	filename – Path to either PDAL pipeline or point cloud.

	storage – silvimetric.resources.storage.Storage database object.

	Returns:

	Point data array from PDAL.

	
silvimetric.commands.shatter.get_metrics(data_in, storage: Storage)

	Run DataFrames through metric processes

	
silvimetric.commands.shatter.get_processes(leaves: Generator[Extents, None, None], config: ShatterConfig, storage: Storage) → Bag

	Create dask bags and the order of operations.

	
silvimetric.commands.shatter.join(list_data, metric_data)

	Join the list data and metric DataFrames together

	
silvimetric.commands.shatter.run(leaves: Generator[Extents, None, None], config: ShatterConfig, storage: Storage) → int

	Coordinate running of shatter process and handle any interruptions

	Parameters:

	
	leaves – Generator of Leaf nodes.

	config – silvimetric.resources.config.ShatterConfig

	storage – silvimetric.resources.storage.Storage

	Returns:

	Number of points processed.

	
silvimetric.commands.shatter.shatter(config: ShatterConfig) → int

	Handle setup and running of shatter process.
Will look for a config that has already been run before and needs to be
resumed.

	Parameters:

	config – silvimetric.resources.config.ShatterConfig.

	Returns:

	Number of points processed.

	
silvimetric.commands.shatter.write(data_in, storage, timestamp)

	Write cell data to database

	Parameters:

	
	data_in – Data to be written to database.

	tdb – TileDB write stream.

	Returns:

	Number of points written.

Info

	
silvimetric.commands.info.check_values(start_time: datetime, end_time: datetime, bounds: Bounds, name: UUID | str)

	Validate arguments for info command.

	Parameters:

	
	start_time – Starting datetime object.

	end_time – Ending datetime object.

	bounds – Bounds to query by.

	name – Name to query by.

	Raises:

	
	TypeError – Incorrect type of start_time argument.

	TypeError – Incorrect type of end_time argument.

	TypeError – Incorrect type of bounds argument.

	TypeError – Incorrect type of name argument.

	TypeError – Incorrect type of name argument.

	
silvimetric.commands.info.info(tdb_dir: str, start_time: datetime = None, end_time: datetime = None, bounds: Bounds = None, name: str | UUID = None) → dict

	Collect information about database in current state

	Parameters:

	
	tdb_dir – TileDB database directory path.

	start_time – Process starting time query, defaults to None

	end_time – Process ending time query, defaults to None

	bounds – Bounds query, defaults to None

	name – Name query, defaults to None

	Returns:

	Returns json object containing information on database.

Extract

	
silvimetric.commands.extract.extract(config: ExtractConfig) → None

	Pull data from database for each desired metric and output them to rasters

	Parameters:

	config – ExtractConfig.

	
silvimetric.commands.extract.get_metrics(data_in: pandas.DataFrame, storage: Storage)

	Reruns a metric over this cell. Only called if there is overlapping data.

	Parameters:

	
	data_in – Dataframe to be rerun.

	storage – Base storage object.

	Returns:

	Combined dict of attribute and newly derived metric data.

	
silvimetric.commands.extract.handle_overlaps(config: ExtractConfig, storage: Storage, indices: ndarray) → pandas.DataFrame

	Handle cells that have overlapping data. We have to re-run metrics over these
cells as there’s no other accurate way to determined metric values. If there
are no overlaps, this will do nothing.

	Parameters:

	
	config – ExtractConfig.

	storage – Database storage object.

	indices – Indices with overlap.

	Returns:

	Dataframe of rerun data.

	
silvimetric.commands.extract.write_tif(xsize: int, ysize: int, data: ndarray, name: str, config: ExtractConfig) → None

	Write out a raster with GDAL

	Parameters:

	
	xsize – Length of X plane.

	ysize – Length of Y plane.

	data – Data to write to raster.

	name – Name of raster to write.

	config – ExtractConfig.

Delete

	
silvimetric.commands.manage.delete(tdb_dir: str, name: str) → ShatterConfig

	Delete Shatter process from database and return config for that process.

	Parameters:

	
	tdb_dir – TileDB database directory path.

	name – UUID name of the Shatter process.

	Raises:

	
	KeyError – Shatter process with ID does not exist.

	ValueError – Shatter process with ID is missing a time reservation

	Returns:

	Config of process that was deleted.

Resume

	
silvimetric.commands.manage.resume(tdb_dir: str, name: str) → int

	Resume partially completed shatter process. Process must partially completed
and have an already established time slot.

	Parameters:

	
	tdb_dir – TileDB database directory path.

	name – UUID name of Shatter process.

	Returns:

	Point count of the restarted shatter process.

Restart

	
silvimetric.commands.manage.restart(tdb_dir: str, name: str) → int

	Delete shatter process from database and run it again with the same config.

	Parameters:

	
	tdb_dir – TileDB database directory path.

	name – UUID name of Shatter process.

	Returns:

	Point count of the restarted shatter process.

QuickStart

SilviMetric depends upon Conda [https://docs.conda.io/en/latest/] for packaging support. You must first install
all of SilviMetric’s dependencies using Conda:

This tutorial shows you how to initialize, shatter, and
extract data in SilviMetric using the Command Line Interface.

We are going to use the Autzen Stadium [https://viewer.copc.io/?copc=https://s3.amazonaws.com/hobu-lidar/autzen-classified.copc.laz]
as our test example.

Note

The Autzen Stadium has units in feet, and this can sometimes be a source of confusion
for tile settings and such.

Installation

Open a Conda terminal and install necessary dependencies

conda env create \
 -f https://raw.githubusercontent.com/hobuinc/silvimetric/main/environment.yml \
 -n silvimetric

Note

We are installing the list of dependencies as provided by the SilviMetric
GitHub listing over the internet.

Warning

If you are using windows, line continuation characters are ^ instead of \

	Activate the environment:

conda activate silvimetric

	Install SilviMetric:

pip install silvimetric

Initialization

Initialize a SilviMetric database. To initialize a SilviMetric database, we
need a bounds and a coordinate reference system.

	
	We first need to determine a bounds for our database. In our case,
	we are going to use PDAL and jq [https://jqlang.github.io/jq/download/] to
grab our bounds

pdal info https://s3.amazonaws.com/hobu-lidar/autzen-classified.copc.laz \
 --readers.copc.resolution=1 | jq -c '.stats.bbox.native.bbox'

Our boundary is emitted in expanded form.

{"maxx":639003.73,"maxy":853536.21,"maxz":615.26,"minx":635579.2,"miny":848884.83,"minz":406.46}

Note

You can express bounds in two additional formats for SilviMetric:

	[635579.2, 848884.83, 639003.73, 853536.21] – [minx, miny, maxx, maxy]

	([635579.2,848884.83],[639003.73,853536.2]) – ([minx, maxx], [miny, maxy])

Note

You can install jq by issuing conda install jq -y in your environment if
you are on Linux or Mac. On Windows, you will need to download jq from
the website and put it in your path. https://jqlang.github.io/jq/download/

	
	We need a coordinate reference system for the database. We will grab it from
	the PDAL metadata just like we did for the bounds.

pdal info --metadata https://s3.amazonaws.com/hobu-lidar/autzen-classified.copc.laz \
 --readers.copc.resolution=10 | \
 jq -c '.metadata.srs.json.components[0].id.code'

Our EPSG code is in the pdal info --metadata output, and after extracted by jq, we
can use it.

2992

Note

Both a bounds and CRS must be set to initialize a database. We can set them
to whatever we want, but any data we are inserting into the database must
match the coordinate system of the SilviMetric database.

	With bounds and CRS in hand, we can now initialize the database

silvimetric autzen-smdb.tdb \
 initialize \
 '{"maxx":639003.73,"maxy":853536.21,"maxz":615.26,"minx":635579.2,"miny":848884.83,"minz":406.46}' \
 EPSG:2992

Note

Be careful with your shell’s quote escaping rules!

Scan

The scan command will tell us information about the pointcloud with respect
to the database we already created, including a best guess at the correct number
of cells per tile, or tile size.

silvimetric -d ${db_name} scan ${pointcloud}

We should see output like the output below, recommending we use a tile size
of 185.

silvimetric - INFO - info:156 - Pointcloud information:
silvimetric - INFO - info:156 - Storage Bounds: [635579.2, 848884.83, 639003.73, 853536.21]
silvimetric - INFO - info:156 - Pointcloud Bounds: [635577.79, 848882.15, 639003.73, 853537.66]
silvimetric - INFO - info:156 - Point Count: 10653336
silvimetric - INFO - info:156 - Tiling information:
silvimetric - INFO - info:156 - Mean tile size: 91.51758793969849
silvimetric - INFO - info:156 - Std deviation: 94.31396536316173
silvimetric - INFO - info:156 - Recommended split size: 185

Shatter

We can now insert data into the SMDB.

If we run this command without the argument –tilesize, Silvimetric will
determine a tile size for you. The method will be the same as the Scan method,
but will filter out the tiles that have no data in them.

silvimetric -d autzen-smdb.tdb \
 --threads 4 \
 --workers 4 \
 --watch \
 shatter \
 --date 2008-12-01 \
 https://s3.amazonaws.com/hobu-lidar/autzen-classified.copc.laz

If we grab the tile size from the scan that we ran earlier, we’ll skip the
filtering step.

silvimetric -d autzen-smdb.tdb \
 --threads 4 \
 --workers 4 \
 --watch \
 shatter \
 --tilesize 185 \
 --date 2008-12-01 \
 https://s3.amazonaws.com/hobu-lidar/autzen-classified.copc.laz

Extract

After data is inserted, we can extract it into different rasters. When we created
the database we gave it a list of Attributes and Metrics. When we ran
Shatter, we filled in the values for those in each cell. If we have a database
with the Attributes Intensity and Z, in combination with the Metrics min and
max, each cell will contain values for min_Intensity, max_Intensity,
min_Z, and max_Z. This is also the list of available rasters we can extract.

silvimetric -d autzen-smdb.tdb extract -o output-directory

Info

We can query past shatter processes and the schema for the database with the
Info call.

silvimetric -d autzen-smdb.tdb info --history

This will print out a JSON object containing information about the current state
of the database. We can find the name key here, which necessary for
Delete, Restart, and Resume. For the following commands we will have
copied the value of the name key in the variable uuid.

Delete

We can also remove a shatter process by using the delete command. This will
remove all data associated with that shatter process from the database, but
will leave an updated config of it in the database config should you want to
reference it later.

silvimetric -d autzen-smdb.tdb delete --id $uuid

Restart

If you would like to rerun a Shatter process, whether or not it was previously
finished, you can use the restart command. This will call the delete method
and use the config from that to re-run the shatter process.

silvimetric -d autzen-smdb.tdb restart --id $uuid

Resume

If a Shatter process is cancelled partway through, we can pick up where we
left off with the Resume command.

silvimetric -d autzen-smdb.tdb resume --id $uuid

Development

SilviMetric is released under the Apache 2.0 License [https://www.apache.org/licenses/LICENSE-2.0].

SilviMetric is managed and developed on GitHub at https://github.com/hobuinc/silvimetric

Tutorial

	Author:

	Kyle Mann

	Contact:

	kyle@hobu.co

	Date:

	2/05/2024

Table of Contents

	Tutorial

	Introduction

	Technologies

	Command Line Interface Usage

	Python API Usage

This tutorial will cover how to interact with SilviMetric, including the key
commands initialize, info, scan, shatter, and
extract. These commands make up the core functionality of SilviMetric
and will allow you convert point cloud files into a storage system with TileDB
and extract the metrics that are produced into rasters or read with the
library/language of your choice.

Introduction

SilviMetric was created as a spiritual successor to FUSION [http://forsys.sefs.uw.edu/fusion/fusionlatest.html], a C++ library
written by Robert McGaughey, with a focus on the point cloud metric extraction
and management capability that FUSION provides in the form of GridMetrics.
SilviMetric aims to handle the challenge of computing statistics and metrics
from LiDAR data by using Python [https://python.org/] instead of C++, delegate data management to
TileDB [https://tiledb.com/], and leverage the wealth of capabilities provided in the machine
learning and scientific computing ecosystem of Python. The goal is to create a
library and command line utilities that a wider audience of researchers and
developers can contribute to, support distributed computing and storage systems
in the cloud, and provide a convenient solution to the challenge of
distributing and managing LiDAR metrics that are typically used for forestry
modeling.

Technologies

TileDB

TileDB [https://tiledb.com/] is an open source database engine for array data. Some features that it
provides that make it especially attractive for the challenge that SilviMetric has
include:

	Sophisticated “infinite” sparse array support

	Time travel

	Multiple APIs (Python, C++, R, Go, Java)

	Cloud object store (S3, AzB, GCS)

PDAL

PDAL [https://pdal.io/] provides point cloud processing, translation, and data conditioning utilities
that SilviMetric depends upon to read, ingest, and process point cloud data.

Dask

Dask [https://www.dask.org/] provides the parallel execution engine for SilviMetric.

NumPy

NumPy [https://numpy.org/] is the array processing library of Python that other libraries in the
ecosystem build upon including PDAL [https://pdal.io/], SciPy [https://scipy.org/], scikit-learn [https://scikit-learn.org/stable/] and
PyTorch [https://pytorch.org/]/Tensorflow [https://www.tensorflow.org/].

Command Line Interface Usage

Base

The base options for SilviMetric include setup options that include dask setup
options, log setup options, and progress reporting options. The click [https://pypi.org/project/click/] python library requires that commands and
options associated with specific groups appear in certain orders, so our base
options will always be first.

Usage: silvimetric [OPTIONS] COMMAND [ARGS]...

Options:
-d, --database PATH Database path
--debug Print debug messages?
--log-level TEXT Log level (INFO/DEBUG)
--log-dir TEXT Directory for log output
--progress BOOLEAN Report progress
--workers INTEGER Number of workers for Dask
--threads INTEGER Number of threads per worker for Dask
--watch Open dask diagnostic page in default web
 browser.
--dasktype [threads|processes] What Dask uses for parallelization. For
 moreinformation see here https://docs.dask.o
 rg/en/stable/scheduling.html#local-threads
--scheduler [distributed|local|single-threaded]
 Type of dask scheduler. Both are local, but
 are run with different dask libraries. See
 more here https://docs.dask.org/en/stable/sc
 heduling.html.
--help Show this message and exit.

Initialize

initialize will create a TileDB [https://tiledb.com/] database that will house all future information
that is collected about processed point clouds, including attribute data collected
about point in a cell, as well as the computed metrics for each individual
combination of Attribute and Metric for each cell.

Here you will need to define the root bounds of the data, which can be larger
than just one dataset, as well as the coordinate system it will live in. You
will also need to define any Attributes and Metrics, as these will be
propagated to future processes.

Example:

$ DB_NAME="western-us.tdb"
$ BOUNDS="[-14100053.268191, 3058230.975702, -11138180.816218, 6368599.176434]"
$ EPSG=3857

$ silvimetric --database $DB_NAME initialize --bounds "$BOUNDS" --crs "EPSG:$EPSG"

Usage:

Usage: silvimetric initialize [OPTIONS]

Options:
--bounds BOUNDS Root bounds that encapsulates all data [required]
--crs CRS Coordinate system of data [required]
-a, --attributes ATTRS List of attributes to include in Database
-m, --metrics METRICS List of metrics to include in Database
--resolution FLOAT Summary pixel resolution
--help Show this message and exit.

User-Defined Metrics

SilviMetric supports creating custom user defined Metrics not provided by the
base software. These behave the same as provided Metrics, but can be defined
per-database.

You can create a metrics module by following the sample below, and substituting
any number of extra metrics in place of p75 and p90. When looking for a
metrics module, we look for a method named metrics, and that it returns a
list of Metric objects. The methods that are included in these objects need to
be able to be serialized by dill [https://pypi.org/project/dill/] in order
to be pushed and fetched to and from the database.

 1 import numpy as np
 2
 3 from silvimetric.resources import Metric
 4
 5 def metrics() -> list[Metric]:
 6
 7 def p75(arr: np.ndarray):
 8 return np.percentile(arr, 75)
 9 m_p75 = Metric(name='p75', dtype=np.float32, method = p75)
10
11 def p90(arr: np.ndarray):
12 return np.percentile(arr, 90)
13 m_p90 = Metric(name='p90', dtype=np.float32, method = p90)
14
15 return [m_p75, m_p90]

When including the metrics in the initialize step, be sure to include them by
doing -m ‘./path/to/metrics.py’. At this point, you will need to have all
other metrics you would like to include as well.

Example:

$ METRIC_PATH="./path/to/python_metrics.py"
$ silvimetric --database $DB_NAME initialize --bounds "$BOUNDS" \
 --crs "EPSG:$EPSG" \
 -m $METRIC_PATH -m min -m max -m mean

Warning

Additional Metrics cannot be added to a SilviMetric after it has been
initialized at this time.

Scan

scan will allow us to look through the nodes of the point cloud file
that you’d like to run in order to determine a good number of cells you should
include per tile. The Shatter process will take steps to try to inform itself
of the best splits possible before doing it’s work. The filter process will remove
any sections of the bounds that are empty before we get to the shatter process,
removing some wasted compute time. By performing a scan ahead of time though,
you only need to do it once.

When scan looks through each section of the data, it looks to see how many points
are here, how much area this section is taking up, and what depth we’re at in
the octree. If any of these pass the defined thresholds, then we stop splitting
and return that tile. The number of cells in that tile further tells us how best
to split the data.

One standard deviation from the mean is a good starting point for a shatter
process, but this won’t always be perfect for your use case.

Usage:

Usage: silvimetric scan [OPTIONS] POINTCLOUD

Scan point cloud and determine the optimal tile size.

Options:
--resolution FLOAT Summary pixel resolution
--filter Remove empty space in computation. Will take extra
 time.
--point_count INTEGER Point count threshold.
--depth INTEGER Quadtree depth threshold.
--bounds BOUNDS Bounds to scan.
--help Show this message and exit.

Example:

$ FILEPATH="https://s3-us-west-2.amazonaws.com/usgs-lidar-public/MT_RavalliGraniteCusterPowder_4_2019/ept.json"
$ silvimetric -d $DB_NAME --watch scan $FILEPATH

Output:

2024-02-05 17:29:21,464 - silvimetric - INFO - scan:24 - Tiling information:
2024-02-05 17:29:21,465 - silvimetric - INFO - scan:25 - Mean tile size: 447.98609121670717
2024-02-05 17:29:21,465 - silvimetric - INFO - scan:26 - Std deviation: 38695.06897023395
2024-02-05 17:29:21,465 - silvimetric - INFO - scan:27 - Recommended split size: 39143

Shatter

shatter is where the vast majority of the processing happens. Here
SilviMetric will take all the previously defined variables like the bounds,
resolution, and our tile size, and it will split all data values up into their
respective bins. From here, SilviMetric will perform each Metric previously
defined in initialize over the data in each cell. At the end of all that,
this data will be written to a SparseArray in TileDB, where it will be much
easier to access.

Usage:

Usage: silvimetric shatter [OPTIONS] POINTCLOUD

Options:
--bounds BOUNDS Bounds for data to include in processing
--tilesize INTEGER Number of cells to include per tile
--report Whether or not to write a report of the
 process, useful for debugging
--date [%Y-%m-%d|%Y-%m-%dT%H:%M:%SZ]
 Date the data was produced.
--dates <DATETIME DATETIME>... Date range the data was produced during
--help Show this message and exit.

Example:

$ BOUNDS='[-12317431.810079003, 5623829.111356639, -12304931.810082098, 5642881.670239899]'
$ silvimetric -d $DB_NAME \
 --watch shatter $FILEPATH \
 --tilesize 100 \
 --date 2024-02-05 \
 --report \
 --bounds $BOUNDS

Info

info provides the ability to inspect the SilviMetric database. Here you
can see past Shatter processes that have been run, including point counts,
attributes, metrics, and other process metadata.

Usage:

Usage: silvimetric info [OPTIONS]

Options:
--bounds BOUNDS Bounds to filter by
--date [%Y-%m-%d|%Y-%m-%dT%H:%M:%SZ]
 Select processes with this date
--dates <DATETIME DATETIME>... Select processes within this date range
--name TEXT Select processes with this name
--help Show this message and exit.

Example:

$ silvimetric -d $DB_NAME info

Output:

 1{
 2 "attributes": [
 3 {
 4 "name": "Z",
 5 "dtype": "<f8",
 6 "dependencies": null
 7 }
 8],
 9 "metadata": {
10 "tdb_dir": "western-us.tdb",
11 "log": {
12 "logdir": null,
13 "log_level": "INFO",
14 "logtype": "stream",
15 "logfilename": "silvimetric-log.txt"
16 },
17 "debug": false,
18 "root": [
19 -14100053.268191,
20 3058230.975702,
21 -11138180.816218,
22 6368599.176434
23],
24 "crs": {"PROJJSON"}
25 "resolution": 30.0,
26 "attrs": [
27 {
28 "name": "Z",
29 "dtype": "<f8",
30 "dependencies": null
31 }
32],
33 "metrics": [
34 {
35 "name": "mean",
36 "dtype": "<f4",
37 "dependencies": null,
38 "method_str": "def m_mean(data):\n return np.mean(data)\n",
39 "method": "gASVKwAAAAAAAACMHHNpbHZpbWV0cmljLnJlc291cmNlcy5tZXRyaWOUjAZtX21lYW6Uk5Qu"
40 }
41],
42 "version": "0.0.1",
43 "capacity": 1000000
44 },
45 "history": []
46}

Extract

extract is the final stop, where SilviMetric outputs the metrics that
been binned up nicely, and will output them as rasters to where you select.

Usage:

Usage: silvimetric extract [OPTIONS]

Extract silvimetric metrics from DATABASE

Options:
-a, --attributes ATTRS List of attributes to include output
-m, --metrics METRICS List of metrics to include in output
--bounds BOUNDS Bounds for data to include in output
-o, --outdir PATH Output directory. [required]
--help Show this message and exit.

Example:

$ OUT_DIR="western-us-tifs"
$ silvimetric -d $DB_NAME extract --outdir $OUT_DIR

Python API Usage

Everything that can be done from the command line can also be performed from
within Python. The CLI provides some nice wrapping around some of the setup
pieces, including config, log, and Dask handling, but all of these are pieces
that you can set up on your own as well.

import os
from pathlib import Path
import numpy as np
import pdal
import json
from dask.distributed import Client
import webbrowser

from silvimetric.resources import Storage, Metric, Metrics, Bounds, Pdal_Attributes
from silvimetric.resources import StorageConfig, ShatterConfig, ExtractConfig
from silvimetric.commands import scan, shatter, extract

########## Setup #############

Here we create a path for our current working directory, as well as the path
to our forest data, the path to the database directory, and the path to the
directory that will house the raster data.
curpath = Path(os.path.dirname(os.path.realpath(__file__)))
filename = "https://s3-us-west-2.amazonaws.com/usgs-lidar-public/MT_RavalliGraniteCusterPowder_4_2019/ept.json"
db_dir_path = Path(curpath / "western_us.tdb")

db_dir = str(db_dir_path)
out_dir = str(curpath / "westsern_us_tifs")
resolution = 10 # 10 meter resolution

we'll use PDAL python bindings to find the srs of our data, and the bounds
reader = pdal.Reader(filename)
p = reader.pipeline()
qi = p.quickinfo[reader.type]
bounds = Bounds.from_string((json.dumps(qi['bounds'])))
srs = json.dumps(qi['srs']['json'])

######## Create Metric ########
Metrics give you the ability to define methods you'd like applied to the data
Here we define, the name, the data type, and what values we derive from it.

def make_metric():
 def p75(arr: np.ndarray):
 return np.percentile(arr, 75)

 return Metric(name='p75', dtype=np.float32, method = p75)

Create Storage
This will create a tiledb database, same as the `initialize` command would
from the command line. Here we'll define the overarching bounds, which may
extend beyond the current dataset, as well as the CRS of the data, the list
of attributes that will be used, as well as metrics. The config will be stored
in the database for future processes to use.

def db():
 perc_75 = make_metric()
 attrs = [
 Pdal_Attributes[a]
 for a in ['Z', 'NumberOfReturns', 'ReturnNumber', 'Intensity']
]
 metrics = [
 Metrics[m]
 for m in ['mean', 'min', 'max']
]
 metrics.append(perc_75)
 st_config = StorageConfig(db_dir, bounds, resolution, srs, attrs, metrics)
 storage = Storage.create(st_config)

Perform Shatter
The shatter process will pull the config from the database that was previously
made and will populate information like CRS, Resolution, Attributes, and what
Metrics to perform from there. This will split the data into cells, perform
the metric method over each cell, and then output that information to TileDB

def sh():
 sh_config = ShatterConfig(db_dir, filename, tile_size=200)
 with Client(n_workers=10, threads_per_worker=3, timeout=100000) as client:
 webbrowser.open(client.cluster.dashboard_link)
 shatter(sh_config, client)

Perform Extract
The Extract step will pull data from the database for each metric/attribute combo
and store it in an array, where it will be output to a raster with the name
`m_{Attr}_{Metric}.tif`. By default, each computed metric will be written
to the output directory, but you can limit this by defining which Metric names
you would like
def ex():
 ex_config = ExtractConfig(db_dir, out_dir)
 extract(ex_config)

####### Perform Scan #######
The Scan step will perform a search down the resolution tree of the COPC or
EPT file you've supplied and will provide a best guess of how many cells per
tile you should use for this dataset.

def sc():
 scan.scan()

if __name__ == "__main__":
 make_metric()
 db()
 sh()
 ex()

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 silvimetric	

 	
 	
 silvimetric.commands.extract	

 	
 	
 silvimetric.commands.info	

 	
 	
 silvimetric.commands.initialize	

 	
 	
 silvimetric.commands.scan	

 	
 	
 silvimetric.commands.shatter	

 	
 	
 silvimetric.resources.bounds	

 	
 	
 silvimetric.resources.config	

 	
 	
 silvimetric.resources.data	

 	
 	
 silvimetric.resources.log	

 	
 	
 silvimetric.resources.storage	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X
 | Y

A

 	
 	adjust_to_cell_lines() (silvimetric.resources.bounds.Bounds method)

 	agg_list() (in module silvimetric.commands.shatter)

 	ApplicationConfig (class in silvimetric.resources.config)

 	arrange() (in module silvimetric.commands.shatter)

 	
 	array (silvimetric.resources.data.Data property)

 	Attribute (class in silvimetric.resources.entry)

 	attrs (silvimetric.resources.config.ExtractConfig attribute)

 	(silvimetric.resources.config.ShatterConfig attribute)

 	(silvimetric.resources.config.StorageConfig attribute)

B

 	
 	bisect() (silvimetric.resources.bounds.Bounds method)

 	Bounds (class in silvimetric.resources.bounds)

 	bounds (silvimetric.resources.config.ExtractConfig attribute)

 	(silvimetric.resources.config.ShatterConfig attribute)

 	(silvimetric.resources.data.Data attribute)

 	(silvimetric.resources.extents.Extents attribute)

C

 	
 	capacity (silvimetric.resources.config.StorageConfig attribute)

 	cell_count (silvimetric.resources.extents.Extents attribute)

 	check_values() (in module silvimetric.commands.info)

 	chunk() (silvimetric.resources.extents.Extents method)

 	
 	Config (class in silvimetric.resources.config)

 	consolidate_shatter() (silvimetric.resources.storage.Storage method)

 	count() (silvimetric.resources.data.Data method)

 	create() (silvimetric.resources.storage.Storage static method)

 	crs (silvimetric.resources.config.StorageConfig attribute)

D

 	
 	dasktype (silvimetric.resources.config.ApplicationConfig attribute)

 	Data (class in silvimetric.resources.data)

 	date (silvimetric.resources.config.ShatterConfig attribute)

 	debug (silvimetric.resources.config.ApplicationConfig attribute)

 	(silvimetric.resources.config.Config attribute)

 	debug() (silvimetric.resources.log.Log method)

 	
 	default() (silvimetric.resources.config.SilviMetricJSONEncoder method)

 	delete() (in module silvimetric.commands.manage)

 	(silvimetric.resources.storage.Storage method)

 	disjoint() (silvimetric.resources.bounds.Bounds method)

 	(silvimetric.resources.extents.Extents method)

 	disjoint_by_mbr() (silvimetric.resources.extents.Extents method)

 	domain (silvimetric.resources.extents.Extents attribute)

E

 	
 	end_time (silvimetric.resources.config.ShatterConfig attribute)

 	Entry (class in silvimetric.resources.entry)

 	estimate_count() (silvimetric.resources.data.Data method)

 	execute() (silvimetric.resources.data.Data method)

 	
 	extent_handle() (in module silvimetric.commands.scan)

 	Extents (class in silvimetric.resources.extents)

 	extract

 	extract() (in module silvimetric.commands.extract)

 	ExtractConfig (class in silvimetric.resources.config)

F

 	
 	filename (silvimetric.resources.config.ShatterConfig attribute)

 	(silvimetric.resources.data.Data attribute)

 	filter() (silvimetric.resources.extents.Extents method)

 	finished (silvimetric.resources.config.ShatterConfig attribute)

 	
 	from_db() (silvimetric.resources.storage.Storage static method)

 	from_storage() (silvimetric.resources.extents.Extents static method)

 	from_string() (silvimetric.resources.bounds.Bounds static method)

 	from_sub() (silvimetric.resources.extents.Extents static method)

G

 	
 	get() (silvimetric.resources.bounds.Bounds method)

 	get_array() (silvimetric.resources.data.Data method)

 	get_bounds() (silvimetric.resources.data.Data static method)

 	get_data() (in module silvimetric.commands.shatter)

 	get_fragments_by_time() (silvimetric.resources.storage.Storage method)

 	get_history() (silvimetric.resources.storage.Storage method)

 	get_indices() (silvimetric.resources.extents.Extents method)

 	get_leaf_children() (silvimetric.resources.extents.Extents method)

 	get_metrics() (in module silvimetric.commands.extract)

 	(in module silvimetric.commands.shatter)

 	
 	get_pipeline() (silvimetric.resources.data.Data method)

 	get_processes() (in module silvimetric.commands.shatter)

 	get_reader() (silvimetric.resources.data.Data method)

 	getAttributes() (silvimetric.resources.storage.Storage method)

 	getConfig() (silvimetric.resources.storage.Storage method)

 	getDerivedNames() (silvimetric.resources.storage.Storage method)

 	getMetadata() (silvimetric.resources.storage.Storage method)

 	getMetrics() (silvimetric.resources.storage.Storage method)

H

 	
 	handle_overlaps() (in module silvimetric.commands.extract)

I

 	
 	info

 	info() (in module silvimetric.commands.info)

 	(silvimetric.resources.log.Log method)

 	
 	initialize

 	initialize() (in module silvimetric.commands.initialize)

 	is_pipeline() (silvimetric.resources.data.Data method)

J

 	
 	join() (in module silvimetric.commands.shatter)

L

 	
 	Log (class in silvimetric.resources.log)

 	
 	log (silvimetric.resources.config.Config attribute)

M

 	
 	make_pipeline() (silvimetric.resources.data.Data method)

 	maxx (silvimetric.resources.bounds.Bounds attribute)

 	maxy (silvimetric.resources.bounds.Bounds attribute)

 	mbr (silvimetric.resources.config.ShatterConfig attribute)

 	mbrs() (silvimetric.resources.storage.Storage method)

 	Metric (class in silvimetric.resources.metric)

 	metrics (silvimetric.resources.config.ExtractConfig attribute)

 	(silvimetric.resources.config.ShatterConfig attribute)

 	(silvimetric.resources.config.StorageConfig attribute)

 	minx (silvimetric.resources.bounds.Bounds attribute)

 	miny (silvimetric.resources.bounds.Bounds attribute)

 	
 	
 module

 	silvimetric.commands.extract

 	silvimetric.commands.info

 	silvimetric.commands.initialize

 	silvimetric.commands.scan

 	silvimetric.commands.shatter

 	silvimetric.resources.bounds

 	silvimetric.resources.config

 	silvimetric.resources.data

 	silvimetric.resources.log

 	silvimetric.resources.storage

N

 	
 	name (silvimetric.resources.config.ShatterConfig attribute)

 	
 	next_time_slot (silvimetric.resources.config.StorageConfig attribute)

O

 	
 	open() (silvimetric.resources.storage.Storage method)

 	
 	out_dir (silvimetric.resources.config.ExtractConfig attribute)

P

 	
 	pipeline (silvimetric.resources.data.Data attribute)

 	
 	point_count (silvimetric.resources.config.ShatterConfig attribute)

 	progress (silvimetric.resources.config.ApplicationConfig attribute)

R

 	
 	rangex (silvimetric.resources.extents.Extents attribute)

 	rangey (silvimetric.resources.extents.Extents attribute)

 	reader (silvimetric.resources.data.Data attribute)

 	reader_thread_count (silvimetric.resources.data.Data attribute)

 	reserve_time_slot() (silvimetric.resources.storage.Storage method)

 	resolution (silvimetric.resources.config.StorageConfig attribute)

 	(silvimetric.resources.extents.Extents attribute)

 	
 	restart() (in module silvimetric.commands.manage)

 	resume() (in module silvimetric.commands.manage)

 	root (silvimetric.resources.config.StorageConfig attribute)

 	(silvimetric.resources.extents.Extents attribute)

 	run() (in module silvimetric.commands.shatter)

S

 	
 	saveConfig() (silvimetric.resources.storage.Storage method)

 	saveMetadata() (silvimetric.resources.storage.Storage method)

 	scan

 	scan() (in module silvimetric.commands.scan)

 	scheduler (silvimetric.resources.config.ApplicationConfig attribute)

 	shared_bounds() (silvimetric.resources.bounds.Bounds static method)

 	shatter

 	shatter() (in module silvimetric.commands.shatter)

 	ShatterConfig (class in silvimetric.resources.config)

 	
 silvimetric.commands.extract

 	module

 	
 silvimetric.commands.info

 	module

 	
 silvimetric.commands.initialize

 	module

 	
 silvimetric.commands.scan

 	module

 	
 	
 silvimetric.commands.shatter

 	module

 	
 silvimetric.resources.bounds

 	module

 	
 silvimetric.resources.config

 	module

 	
 silvimetric.resources.data

 	module

 	
 silvimetric.resources.log

 	module

 	
 silvimetric.resources.storage

 	module

 	SilviMetricJSONEncoder (class in silvimetric.resources.config)

 	split() (silvimetric.resources.extents.Extents method)

 	start_time (silvimetric.resources.config.ShatterConfig attribute)

 	Storage (class in silvimetric.resources.storage)

 	StorageConfig (class in silvimetric.resources.config)

 	storageconfig (silvimetric.resources.data.Data attribute)

T

 	
 	tdb_dir (silvimetric.resources.config.Config attribute)

 	threads (silvimetric.resources.config.ApplicationConfig attribute)

 	tile_size (silvimetric.resources.config.ShatterConfig attribute)

 	time_slot (silvimetric.resources.config.ShatterConfig attribute)

 	
 	to_json() (silvimetric.resources.bounds.Bounds method)

 	(silvimetric.resources.data.Data method)

 	(silvimetric.resources.log.Log method)

 	to_string() (silvimetric.resources.bounds.Bounds method)

V

 	
 	version (silvimetric.resources.config.StorageConfig attribute)

W

 	
 	warning() (silvimetric.resources.log.Log method)

 	watch (silvimetric.resources.config.ApplicationConfig attribute)

 	
 	workers (silvimetric.resources.config.ApplicationConfig attribute)

 	write() (in module silvimetric.commands.shatter)

 	write_tif() (in module silvimetric.commands.extract)

X

 	
 	x1 (silvimetric.resources.extents.Extents attribute)

 	
 	x2 (silvimetric.resources.extents.Extents attribute)

Y

 	
 	y1 (silvimetric.resources.extents.Extents attribute)

 	
 	y2 (silvimetric.resources.extents.Extents attribute)

	Initialize

	Scan

	Shatter

	Info

	Extract

	Delete

	Resume

	Restart

	Config

	Bounds

	Data

	Log

	Storage

	Entry

	Attribute

	Metric

	Extents

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 SilviMetric

 		
 About

 		
 Technologies

 		
 Command Line Interface

 		
 extract

 		
 Synopsis

 		
 Example

 		
 shatter

 		
 Synopsis

 		
 Example

 		
 info

 		
 Synopsis

 		
 Example

 		
 initialize

 		
 Synopsis

 		
 Example

 		
 scan

 		
 Synopsis

 		
 Usage

 		
 API

 		
 Resources

 		
 Config

 		
 Bounds

 		
 Data

 		
 Log

 		
 Storage

 		
 Entry

 		
 Attribute

 		
 Metric

 		
 Extents

 		
 Commands

 		
 Initialize

 		
 Scan

 		
 Shatter

 		
 Info

 		
 Extract

 		
 Delete

 		
 Resume

 		
 Restart

 		
 QuickStart

 		
 Installation

 		
 Initialization

 		
 Scan

 		
 Shatter

 		
 Extract

 		
 Info

 		
 Delete

 		
 Restart

 		
 Resume

 		
 Development

 		
 Tutorial

 		
 Introduction

 		
 Technologies

 		
 TileDB

 		
 PDAL

 		
 Dask

 		
 NumPy

 		
 Command Line Interface Usage

 		
 Base

 		
 Initialize

 		
 User-Defined Metrics

 		
 Scan

 		
 Shatter

 		
 Info

 		
 Extract

 		
 Python API Usage

